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Appendix E. Statistical Forecasting
Techniques

Frequently, transportation planners need forecasts of freight data as a
basis for a whole range of short-term investment decisions. Indeed, start-
ing a new highway construction project versus a project for the
construction of a new intermodal freight terminal may depend upon
whether the planner projects truck or rail traffic to growth at a faster pace
during the next five years. The problem confronting planners is to take
available time-series data on the freight traffic in question and develop
projections of future volumes or flows. Indeed, the solution to a whole
class of practical transportation planning problems involves assessment of
future freight traffic demand based on time-series data. Since time-series
freight data exist for a number of different types of freight movements, a
number of specific transportation planning issues can be answered by
using that data.

For example, there are time-series data on the volume of traffic (by com-
modity) moving on the inland waterway system. These data can be
disaggregated to show traffic volumes on particular segments of the sys-
tem. Planners are frequently confronted with the problem of projecting
future traffic volumes on each segment in order to determine whether
existing facilities need to be expanded or whether new facilities are, in
fact, required in order to meet demand. Planners also have time-series
data for truck traffic by highway segment. Again, the issue confronting
the plainer is to project that traffic into the future in order to decide
whether or not existing facilities need expansion or whether new facilities
are needed. Airport planners are faced with critical decisions regarding
the mix of air freight versus air passenger facilities on their property. In
order to assist in making that decision, they need to use time-series data
on air freight shipments in order to project future needs. Plamers may
confront a decision regarding a need for an expansion of an urban inter-
modal freight terminal. They could use time-series data from the rail
waybill database to project future intermodal shipments in their metro-
politan area. These represent selected examples of the type of problems
facing transportation planners at the state, local, and even national level
whose solution can benefit from projections generated from the use of
available time-series freight data. ,/
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■ E.1 Regression Analysis

Regression analysis is widely used by analysts for empirical estimation
and forecasting. Regression analysis involves identifying one or more
independent variables (the explanatory variables) which are believed to
influence or determine the value of the dependent variable (the variable to
be explained) and calculating a set of parameters which characterize the
relationship between the independent and dependent variables.

Assume a variable, y, is linearly dependent upon three independent vari-
ables, xl, X2and X3plus some unknown, unmeasurable influence, c

Given a sufficient number of observational of y, xl, ~ and x3, the regres-
sion will use ordinary least squares (OLS) to estimate values of the true
parameters Po, ~1, ~z, and ~s and use these estimates, bo, bl, bz, and bs, to
calculate an estimated value of each observation of y. This estimate is
denoted as j: .. ..

j = bo + blxl + bzxz + bw

The regression assumes the unknown term, e, has a mean value of zero.
The true value of e may be non-zero for any given observation. The dif-
ference between the observed y and its estimate, j, is the “error”, or
“residual” of the estimate. The regression chooses the values of the
parameter estimates to minimize the sum of the squared errors2 of the
estimate to produce the “best” fit.

It must be emphasized that, although regression analysis provides the best
fit between the independent and dependent variables, this does not mean
that the estimated j will be a good estimate of y. Regression simply

10bservations of dependent and independent variables may be time-series or cross
sectional in mture. Time-series data contain a single observation for each variable
for each of several time periods or points in time. Examples might be annual volume
of freight shipments, annual output per employee, and annual real gross domestic
product (GDP). If twenty years’ worth of data are collected, there would be twenty
observations of shipments, output per employee and GDP. Cross sectioml data
contain observations across the population at a point in time or during a single time
interval. Examples include volume of shipments by state, industry, or firm, in a
given year. #

2The sum of the squared errors = ~(~i-~i)’ fornobservatio~
i=]
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guarantees that there is no better estimate of y based on the given inde-
pendent variables. If different independent variables are used, the esti-
mate of y may change significantly. Regression analysis provides little
guidance as to which variable or variables should be used to estimate y?

Ordinary Least Squares Regression

The simplest and most commonly used form of regression analysis is the
“Ordinary Least Squares” (OLS) approach. OLS is a single equation esti-
mation technique in which each observation is given equal “weight” or
importance in estimating the parameters described above. Advanced
forms of regression analysis include weighted least squares, two-stage
least squares, and step wise regression Most packages provide capabili-
ties for one or more of these advanced regression techniques.

OLS is based on several key assumptions. If one or more of these
assumptions is violated, it may be necessary to use an advanced estima-
tion procedure to obtain a satisfactory model. OLS assumes:

1. A “one-way causality” exists between the independent and dependent
variables;

2. The regression includes all relevant independent variables and
excludes irrelevant ones (i.e., the “right regressors” are chosen);

3. The dependent variable can be calculated as a linear function of a spe-
cific set of independent variables plus an error term;

4. The expected value of the error term is zero;

5. The error terms have the same variance and are independent of each
other (uncorrelated errors);

3There are statistical tests availableto assist in determiningthe “significance”of an
independentvariablein explainingvariationin the dependentvariable(the t-test is
most commonlyused). However, these tests do not ascertain whether there is a
meaningful relationship between the variables or a coincidental correlation. If it is
the latter, the model is unlikely to be a reliable forecasting tool, even if it shows a
good statistical “fit.”

4For further discussion of these and other advanced regression techniques the reader
may consult any standard text on econometrics. Particularly good intuitive “
discussions are contained in Peter Kennedy, A Guideto Econometrics,Third Edition,
h41’TPress, Cambridge, Mass., 1992. For more technical specifications see J. Jo~ton,
Econometric Methods, Third Edition, McGraw-Hill, New York, 1984.
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6. Observations of independent variables do not depend on the sample
chosen;

7. No independent variables are linear combinations of other independ-
ent variables (no perfect multicollinearity); and

8. The number of observations exceeds the number of independent vari-
ables.

Some of these assumptions are essential for using OLS, either because of
the implied underlying theoretical relationships (e.g., Assumption 1) or
because of the pure mathematical properties involved in minimizing the
sum of squared errors (e.g., Assumption 7). Others represent nice, desir-
able, properties but may be set aside without invalidating the regression
results. Methods for identifying violations of these assumptions in an OLS
model and the consequences of these violations are discussed in the sec-
ond subsection below.

Model Specification and Testing

The key to a good OLS model lies in the theoretical relationship between
independent and dependent variables, as described in assumptions one
and two above. Johnstons provides a very useful description of the proc-
ess of building and evaluating a regression model. He emphasizes the
following steps:

. .
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1.

2.

3.

4.

5.

6.

Talk with experts to become knowledgeable about the problem being
modeled;

Become familiar with the relevant institutions and the constraints they
impose on the problem;

.-...
Look at the data to gain a better understariding of the problem or

.;~,,,..:.. .,
process being modeled and the limitations of the data;

Base the model on sound economic theory;

Avoid “data mining” in which models are selected on the basis of high
Rz or high t-values while ignoring other, more fundamental, relation-
ships; and

Use the judgment of an “experienced critic” to shape the model.
/

,-.:,.. .,.,
;...

‘q. cit., pp. 498-510.
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Chamcten%tia and Changes in Fnxght Transptation Demand

Building a good regressionmodel requires good data, a thorough under-
standing of the expected relationships among variables, and the time to
test the various outcomes against a range of criteria. Among the most
commonly used tests are:

1. T’he t-test which assesses the likelihood that the estimated parameter,
&is significantly different from zero. If the parameter equals zero, the
corresponding independent variable, ~ provides no information in
the given specitkation; i.e., it does not explain any of the variation of
the dependent variable. Most software packages provide the t-value
for each independent variable. The f-value can then be compared with
the critical value of the Student’s t Distribution table, found in statis-
tics books$ If the absolute value of the computed t exceeds the table
value for the appropriate number of degrees of kedom’ at the desired
confidence level, the parameter estimate is considered to be signifi-
cantly different from zero. To be significant at the five percent level,8
for example, the t-value generally must exceed a value close to two. It
is often possible to test the significance of the t-value without referring
to the table of values; absolute values of t above three will always be
considered significant while those below one will always be consid-
ered insignificant. The t-test is not valid, however, when autocorre-
lated errors are present (see discussion below).

2. Rz, the co@icient of determination, measures the “goodness of fit:’ i.e.,
the amount of the variation in the dependent variable explained by the
independent variables.g Many researchers search for the highest pos-
sible value of R2, regardless of the sensibility of the model they have
developed. This is the wrong approach to model building. One glar-
ing problem with this approach is that the mathematical nature of the
R2 is such that R2 cannot fall when an additional variable is added to a
regression and may rise, regardless of the quality of the variable. The
analyst who wants a high Rz needs only to add more variables,
whether they are sensible or not. A further problem with Rz is that

6E.g., see Stephen Kokoska and Christopher Nevison, Statistical Tab&s and Formulae,
Springer-Verla& Inc., New York, 1989.

7The degrees of freedom for a particdar equation equal the number of observations
(sample size) minus the number of parameters estimated.

‘Significance testing must be based on a level of confidence. The five percent level
repments 95 percent cofildence that the result is true.

$IR2,a~o ~om as the “cWfficiat of detefiation,” is cal~ated as tie ratio of the ,,

regression sum of squares to the total sum of squares and its value ranges between
zero and one. The total sum of squares is the total variation of the dependent
variable around its mean, > (y - J )Z; the regression sum of squares is the variation

of the dependent variable “explained” by the regression, X(y -~ )2.
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time-series regressions typically produce high values of Rz because the
time trend is a strong determinant of both independent and dependent
variables.

3. The adjusted10 measure of Rz corrects for the number of observations
and the number of independent variables and may fall when a new,
meaningless variable is added to the regression. Although a better
measure than Rz, the adjusted Rz still cannot distinguish between a
model that fortuitously fits the data well and one which has identified
the true underlying relationships. Analysts are advised to ignore the
Rz, adjusted or not, when building their models.

4. The standard error of tke estimate (SEE), which provides a better indica-
tion of how well the independent variables explain the variation in the
dependent variable. Adding more variables may reduce or increase
the SEE.

For a more detailed discussion of the range of tests and how to interpret
their results, consult any econometrics textbook.11

Violating the OLS Assumptions

The assumptions identified at the beginning of this section are often vio-
lated in practice, and the tests identified above are often inadequate to
identify the problem. Exhibit E.1 summariz es the effect(s) of each viola-
tion on the ability of OLS to calculate parameter estimates and the useful-
ness of the model’s results.

Although Exhibit E.1 shows that only two violations interfere with OLS’
ability to perform the calculations, there are several situations in which the
parameter estimates or the estimate of the dependent variable (or both) are
less than ideal. If the parameter estimates are questionable, the analyst
would have little confidence in describing the influence that a change in a
particular independent variable’s value would have on the value of the
dependent variable. However, the estimate of the dependent variable

‘2 ,“ is calculated as1°Adjusted R2,also known as” R

~2 -~(1-R2)

where K is the number
observations.

Wne of the less technical
Introduction to Econometrics:
New York, 1989.

of independent variables and T is the number of

#

textbooks is Harry H. Kelejian and Wallace E. Oates,
Rinciples and Applications, Third Edition, Harper& Row,

E-6 Cambridge Systematic, Inc.
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Exhibit E.1 Consequences of Violating the Basic OLS Assumptions

Effect on Ability to Effect on Quality of Effect on Quality of the

Assumption Calculate Parameters Parameter Estimates Estimateof the Dependent Variable

1.

2.

3.

4.

5a.

5b.

6.

7a.

7b.

8.

One-waycausality None

The “right” regressors are used None

The dependent variable is a linear None
function of the independent
variables

The expected value of the error is None
zero

Error terms have some variances None
(homoscedasticity)

Errors are uncorrelatedwith each None
other

Observations of the independent None
variable are fixed even with
repeated sampling

No variables are linear OLS camot perform
combinations of other calculation; matrix
independent variables cannot be inverted

No collinearity None

Number of observations OLS camot perform
calculation

None

May cause bias

Biased

Estimate of the intercept is biased;
other parameter estimates may be
biased or unbiased

Parameter estimates unbiased but
no longer have minimum
variance

Parameter estimates unbiased but
t-test invalid to determine
parameter significance

Biased, especially if
autoregressive model

Parameter estimates unbiased but
large variances make them
unreliable

Not suitable for forecasting because no
meaningful relationship has been
identified

May produce larger errors; less reliable

Poorestimate unless the particular
sampleused for estimationis nearly
linear;unsuitablefor forecasting

Maybe adequate for estimation and
forecasting

May be adequate but can be distorted
by the undue influence of some of the
observations

May be adequate for estimation and
forecasting but using an autocorrelation
correction technique is advised

May still provide good estimation and
forecasts

Estimation and forecasting may be
reliable
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may still be adequate, allowing for the interactions among the independ-
ent variables and the error term. The model may be a good forecasting
tool. If the model does a poor job of estimating the dependent variable but
is adequate in its parameter estimation, the model may be useful for
simulation studies. It is important, therefore, to know the intended pur-
pose of the model before deciding whether a violation of the basic
assumptions renders the model unfit for that purpose.

Perhaps the most difficult assumptions to satisfy are the first two, namely
that the model is using the “right” independent variables to explain the
variation in the dependent variable. One can never be sure that there are
no other pertinent influences on the dependent variable. Furthermore,
even if statistical testing points to the need for an additional variable, there
is no standard procedure for identifying the missing variable. It is easier
to reject potential existing variables than to find and incorporate new ones.
The model builder is advised to choose independent variables that are
consistent with economic or other appropriate theory as a first step.

Regression analysis assumes a “one-way causality” among the variables:
the independent variables must affect the value of the dependent variable
but the dependent variable cannot affect the values of the independent
variables. In some situations this is clearly the case, but in other situations
the relationships may be tangled. Consider the following examples:

1. The number of umbrellas carried in a aty on a given day depends on
the region’s population and the expected probability of rain. Popula-
tion does not depend upon the number of people carrying umbrellas
nor does the probability of rain. One-way causality is well established
in this case.

2. The demand for a new car depends in part on the vehicle’s price, but
the vehicle’s price is determined in part by the aggregate demand for
cars. h this case, there is a simultaneity between demand and price.
OLS would not provide a good basis for forecasting demand if vehicle
price is used as an independent variable. More advanced techniqueslz
might be used in this case.

OLS is a linear estimator and assumes that the variables are linearly
related. OLS will still calculate parameter estimates if the true relationship
is nonlinear but the estimates will not be useful for forecasting. It is criti-
cal that the model builder using OLS specify a linear relationship.

12% Kmedy (q, ~“t.,pp. 157-163) for a good discussion of indirect least squares, “

instrumental variables, two-stage least squares, and limited information, maximum
likelihood techniques which might be used to overcome a simultaneous equation
problem.

..
;.>.:
,.,.
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The linearity of the relationship can often be examined through simple
scatter plots of the data and a nonlinear relationship can sometimes be
“linearized by transforming the variables in a speafic manner. The
logarithmic transformation is probably the most commonly used. It is
appropriate when the growth rates of the variables are related in a linear
manner. When Assumption 4 is violated and the expected valu~ of the
error term is not zero, the estimation of the intercept, bo, will be biased.
Omitting a key, relevant independent variable from the regression is often
responsible for violating Assumption 4. The error term will reflect the
variation in this missing variable and the mean of the error term will likely
not be zero. This is, however, more properly viewed as a violation of
Assumption 2.

Assumption 4 can also be violated if the dependent variable is restricted to
a limited range of values, thereby limiting the potential size of the error.
The nature of the study may make this truncation unavoidable. For
example, a study of low-volume roads would exclude observations of
AADT above a cutoff value. This truncation ensures that the error terms
would not be large enough to cause the dependent variable to be less than
the AADT cutoff, leading to a truncation of the upper end of the error dis-
tribution. The expected value of the truncated error distribution is nega-
tive, not zero.

The two major problems resulting from violating Assumption 5 are het-
eroscedasticity (errors with different variances) and autocorrelated errors.
Heteroscedasticity often occurs when higher values of the independent
variable are associated with larger variances of the error. This maybe an
entirely logical outcome. For example, if personal VMT depends on
income, at higher levels of income there is more opportunity for sponta-
neous discretionary travel. This spontaneity would produce a larger
variability in observed VMT, and, consequently, a greater variability in the
error of the estimate. Several large values of the independent variable
could shift the regression line, weakening its predictive value. A
weighted least squares approach (“generalized least squares”) is often
used instead of OLS when heteroscedasticity is present to reduce the
influence of the observations that are expected to have large errors.

AutoCorrelated errors exist when the errors are not independent of each
other. The Durbin-Watson testis commonly used to detect the presence of
autoconelated errors although the test is not reliable when lagged values
of the dependent variable are used as independent variables. The pres-
ence of autocorrelated errors reduces the reliability of the OLS estimate.

AutoCorrelated errors are often found in time-series data because the effect
of a disturbance usually persists beyond the period in which it occurs. For

,/

example, the Mississippi River flooding affected travel when it occurred
and in the months following. If a model overestimated barge traffic dur-
ing the flood, (i.e., its error was positive), it likely would have underesti-
mated barge traffic during the several months following. The errors
would all be related to the flood and would be correlated with each other.

Cambridge Systematic, inc. E-9
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More generally, there are almost always some exogenous influences that
have been omitted from a model which tend to increase (or decrease) the
dependent variable for several consecutive time periods, thus producing a
series of negative (or positive) errors for these time periods.

AutoCorrelated errors may also result from model misspecification, espe-
aally the omission of a relevant variable, a violation of Assumption 2. If
the model appears to be specified correctly, techniques such as the
Cochrane-Orcutt method can be used to reduce or eliminate the autocorre-
lation.

Assumption 6 specifies that observations of the independent variable are
fixed even when the sampling is repeated. This assures that the inde-
pendent variables are uncorrelated with the error terms. When this
assumption is violated, the OLS estimate will be biased. Assumption 6
will be violated when the independent variables are improperly measured
or when a model is autoregressive. In the latter case, the current value of
the dependent variable is influenced by its own past values which were, in
part, determined by the error term in those periods. Despite their bias,
autoregressive models can still be useful for estimation.

.. .

Although not technically a violation of Assumption 7, strong collinearity
among the independent variables may still weaken a model. If there is an
approximate linear relationship among the independent variables (strong
but not perfect muhicollinearity), OLS will run but the variances of the
parameter estimates will be large, reducing the confidence one should
place in the resulting estimates of the dependent variable. Various tests
exist to determine whether mukicollinearity is present.13 Even if muhicol-
linearity is found, the analyst may choose to do nothing if the model
appears to be satisfactory. 14 Other approaches to multicollinearity include
obtaining more observations since a larger sample size helps to reduce
variance by providing additional information to the regression. The ana-
lyst may also want to consider dropping one of the collinear variables
although this may result in a specification error and biased estimates of
the remainin g parameters if, in fact, the true coefficient of the dropped
variable is not zero.

....
,.
.-..

. ..
... .
gi

.
>.
..;

13Theseinclude an analysis of the correlation matrix and the use of condition indices.
#

14Kennedy (op. cit., p. 181) discusses two “rules of thumb’ which suggest doing
nothing all t statistics greater than 2; or, the R2 from the regression exceeds the R2 of
any independent variable regressed on the other independent variables.
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Forecasting with an OLS Model
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Although much of the emphasis in this discussion has been on building a
satisfactory model to explain the variation in a variable of interest, the

P- Of manY models iS tO provide decision-makers with useful fore-
casts. A well-built econometric model may or may not produce “good”
forecasts. This section discusses some of the pitfalls of forecasting.

In order to use an OLS model for forecastin~ it is necessary to provide
future values (forecasts) of each independent variable. Developing good
forecasts of the independent variables may require additional model
buildin~ extrapolating past trends, or acquiring forecasts from outside
firms or agencies. When the data are trendless, the “naive” forecast that
the next period’s value will equal the current period’s value, may prove
satisfactory. To the extent that estimated or forecasted future values of the
independent variables contain errors, the forecast of the dependent vari-
able will be weakened.

A second problem in forecasting involves the stability of the parameter
estimates. If the parameter estimates are extremely sensitive to the data
sample used in the regression, the model’s structure may change over
time. Forecasting models impliatly assume that the parameter estimates
identified by OLS will be invariant over time. This is rarely true. Statisti-
cal tests, such as the Chow test, are helpful in analyzing the structural
stability of a model. Validation techniques such as estimating the regres-
sion over a portion of the sample and allowing it to “forecast” the remain-
ing values of the dependent variable are also helpful in assessing the
usefulness of the model for forecasting.

A third problem in forecasting involves the unforeseen disturbances
which can cause any forecast to miss its mark. Examples are found in
natural disasters (earthquakes, fires, floods), supply shocks (e.g., petro-
leum), international disturbances, and significant policy changes. The
estimated parameters have no knowledge of these events and the manner
in which they alter the relationship between independent and dependent
variables.

A fourth problem in forecasting involves the range of the independent
variables’ future values. If the values of the independent variables move
outside the range from which the model established its parameter esti-
mates, there is an increasing likelihood that the forecast will have a large
error.

Forecasts which fail to predict the level of the dependent variable can still z
be useful if they forecast the direction of change. Regression models are
more likely to forecast “turning points” than the simple ARIMA models
which extrapolate past trends.

Cambridge Systematic, Inc. E-II
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Regression models can also be used to assess the sensitivity of the
dependent variable to possible changes in one or more independent vari-
ables. These simulations, sometimes called “what if?” analyses, are not
true forecasts but provide a range of outcomes to consider under different . ..

input assumptions. By assigning probabilities to the potential values of ~
the independent variables, an expected future value can be derived.

~J,1
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■ E.2 Exponential Smoothing

Time-series data frequently involve some short-term fluctuations, or up
and down movements in the data, that seem to deviate from an estab-
lished pattern. The first type of time-series forecasting technique involves
the “smoothing” out of these short-term fluctuations by identifying the
underlying pattern in the data and extrapolating the underlying “smooth”
pattern into the future. Exponential smoothing techniques remove ran-
dom fluctuations and establish the underlying pattern in the time-series.
Indeed, all “exponential smoothing” techniques use some form of
weighted average of past observations to smooth out data”‘flu-ctuations.
The differences in methods involve how much weight should be given to
the most recent observation versus the more distant data in generating the
smoothing effect.

Specifically, the “exponential smoothing” methods answer the following
questions: (1) what weight should be given to the most recent value in the
series (in most time-series data, each value is positively correlated with its
preceding value – i.e., positive autocorrelation)?; (2) do the data lack any
pattern such that the best value to use in developing projections is the
overall average of the entire series with no special consideration given to
the more recent data?; (3) what is the general trend in the data?; and (4) do
the data reflect any seasonal pattern?

The “exponential smoothing” procedure in SPSS Trends estimates four
parameters to control for the relative importance of recent observations in
developing predictions. One parameter is used in all applications of the
procedure, while the researcher selects among the other three parameters
depending upon whether the data shows evidence of trends or seasonal-
ity. The four parameters are:

1. The alpha parameter - controls the weight given to the most recent
observation in determining the overall level and is used in all time-
series estimations. (When alpha is one, the single most recent
observations is used exclusively in the smoothing process; when alpha “
is zero, old observations count just as heavily as more recent ones in
the process.) This parameter is referred to as the smoothing constant.

.,.
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2. The gamma or trend parameter - used only when the series shows a
trend. (When the gamma is high, forecasts are based on trends esti-
mated from most recent points in the series; when the gamma is low,
forecast uses trend. based on entire series with all points counting
equally.)

3. The delta parameter - used when the data show a seasonal pattern.
(When delta is high, the seasonality adjustment is based on the more
recent time periods; when delta is low, the seasonality adjustment is
based on the entire series with all time periods counting equally.)

4. The phi parameter – used in place of gamma when the series shows a
trend and that trend is damped, or dying out. (High values of phi
provides rapid response in projections when any indication that the
trend is dying out is given, while low values of phi estimate damping
of the trend from the entire data series.)

In the “exponential smoothing” procedure within SPSS Trends, the
researcher can initially generate a simple data smoothing operation
through the application of a smoothing constant - i.e., the alpha parame-
ter. SPSS Trends will evaluate the range of alpha values and r~o-tnmend a
value for the model with the lowest “sum of squared errors.”

In most applications, however, the researcher is confronted with a more
complicated problem that would benefit from a specification of one or
more additional parameters. The underlying data might have either a
growth or trend component or, alternatively, a seasonal component. h
SPSS Trends, the exponential smoothing procedure provides the flexibility
to handle each of these situations. The routine can estimate both an alpha
and a gamma parameter to achieve minimum error and generate a corre-
sponding smooth curve and projections based on the estimated parame-
ters. This procedure is based on HoIt’s exponential smoothing routine. If,
however, the researcher suspects the data involve both a trend and a sea-
sonal component, the routine can estimate three parameters - alpha (the
smoothing constant); gamma (the trend parameter); and delta (the sea-
sonal parameter). Again, the model will evaluate a range of values for
each of the parameters and recommend values for each based on the
achievement of a minimum sum of squared errors,

The “exponential smoothing” procedure establishes the underlying pat-
tern of the databased on the combination of parameters specified by the
researcher and uses that pattern to make projections of the time-series data
into the future. The exponential smoothing procedure in SPSS Trends
includes a number of features to facilitate its use by planners. It adds two
new series to the existing time-series data for each application. The first

,J

additional series contains the predicted values resulting from the expo-
nential smoothing and the second contains the enor terms. These data can
be plotted against the actual time-series data to show how the smoothed
data compare to the original.

Cambridge Systematic, Inc. E-13
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In addition, the package enables the researcher to develop a plot of the
residuals for examina tion in order to establish whether a pattern exist in
the residuals. Indeed, the residuals should be randomly distributed. If
they display a pattern, then the model is, indeed, inadequate.

Finally, the procedure can provide either one-step or n-step ahead fore- “~

casts based on projection of the “smoothed” underlying pattern into the >.:

future. The researcher can specify the number of time periods beyond the
data for which a projection is requested. Of course, the “exponential
smoothing” routine is most appropriate for the short-range forecasting
situation.

■ E.3 Leading Indicator Regression :~&~.:~,

The curve fitting procedure does not make any assumptions about why
the time-series curve has the particular modeled shape. Indeed, the curve
fitting procedure may indicate that the time-series data best conform to a
linear model and that, indeed, the linear model provides ve~ 610se pre-
dictions of the time-series in the validation period. However, there are
many instances in which researchers believe that the time-series data, i.e.,
the modeled variable, is closely related to another time-series variable. In
fact, the related data series may lead or provide a good prediction of the
time-series variable, i.e., the modeled variable. Thus, if researchers know
the value of the lead or indicator variables at the current moment, they
will be able to develop predictors for the “modeled variable” at some
specified point in the future as indicated by the lead time. In fact, the
indicator variables will be of most value if they lead or predict values of
the “modeled variable” in the future.

Selecting a Lead Variable
.,..;.>.:,:.:>:,.

The following example of relevance to a transportation planner will illus-
trate the point. A need might arise to predict the level of household goods
shipments on a national or regional basis. The future levels of such ship-
ments might establish the need for additional drivers or, perhaps, new
facilities. While curve fitting procedures might provide future estimates
of household goods shipments, there may be reason to believe that other
independent variables will provide “leading indications” of household
goods shipments in the future. Jndeed, a recent investigation showed that
sales of existing homes and retail sales of new automobiles lead by four ‘~
months the number of individual household goods shipments. Thus, the :., ,
model can predict household goods shipments four months into the future ::.:

based on sales of existing homes and retail sales of automobiles in the cur-
~:..

rent month.
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SPSS Trends provides the researcher the means to evaluate the appropri-
ateness of independent explanatory variables, determine an appropriate
lead time for each variable and provide the actual estimation of the vari-
able’s effect on the dependent variable - i.e., determine the statistical coef-
ficients specifying the relationship between auto sales, new home sales
and household goods movements.

Determine Lead Time

The leading indicator regression depends critically on determining an
appropriate leading indicator variable and establishing the appropriate
lead time. The leading indicator regression procedure within SPSS Trends
provides all the necessary tools to make an appropriate analysis. The
establishment of an appropriate lead time between an indicator variable
and the time-series variable of interest, the dependent variable, requires
an examination of a cross-correlation function - i.e., the correlation
between two time-series at the same time and also with each series leading
by one or more lags. By analyzing a cross-correlation function between
two series, researchers can see the lag at which they are most highly corre-
lated.

However, the use of the cross-correlation procedure requires that the two
time-series variables, the dependent modeled variable and the indicator
variable, are stationary - i.e., each variable’s mean and variance stay at
about the same over length of the series. For variables with a gradually
increasing value over the time-series, an effective way to make the series
stationary is to difference it. Taking differences means replacing the
original time-series by the differences between adjacent values in the
series. The leading indicator regression procedure provides for differenc-
ing of time-series data (for one or more differences) and the calculation of
a cross-correlation function between the difference variables.

Once the cross-correlation function is examined to select an appropriate
lead time indicator, the SPSS routine can automatically alter the database
so that each value of the selected lead time indicator variable is matched
with the appropriate value of the dependent or modeled variable during
both the historical and validation periods. Thus, if the indicator variable
leads the dependent variable by three months, then a new variable is cre-
ated in which the first value of the indicator variable is matched with the
fourth value of the dependent variable.

The procedure then enables the researcher to calculate a regression
between the dependent time-series variable, the “modeled variable,” and #
the lead-indicator independent variable. The regression establishes a
coefficient of impact of the lead variable on the value of the dependent
variable. The entire regression equation is used to produce predicted val-
ues of the dependent variable during the historical period, the validation
period, and a future period as well.

Cambridge Systematic, Inc. E-15



Characteristics and Changes in Freight Transportation Demand

Adjusting for Autocorrelation

One of the assumptions made in regression analysis is that the residuals or
errors from regression are uncorrelated among themselves. When impor-
tant explanatory variables are omitted from a regression analysis, autocor-
related residuals commonly occur. When residuals are strongly
autocorrelated, the significance levels reported for the regression coeffi-
cients are wrong and the R-squared value does not accurately summarize
the explanatory power of the independent variables. Time-series regres-
sion frequently violates the assumption of uncorrelated errors, since it is
difficult to include all the important explanatory variables in the regres-
sion.

one way to explain the problem is to note that the time-series regression
involves use of a dependent and independent variables that most proba-
bly have trends, either up or down. The two time-series variables with
trends will correlate simply because of the trends regardless of whether
the two variables are casually related or not. What the researcher wants to
know is whether the two variables are related apart from a similarity due
to autocorrelation. Thus, it becomes necessary to remove the. autocorrela-
tion prior to model estimation.

The leading indicator regression package within SPSS Trends provides
information researchers can use to determine the presence of autocorre-
lated errors in the time-series regression and procedures to correct for
these errors. AutoCorrelation among errors is most frequently determined
by reference to a residual analysis statistic, labeled the Durbin-Watson
Statistic, produced as part of the regression output. Values of this statistic
range from zero to four, with values less than two indicating positively
correlated residuals and values greater than two indicating negatively cor-
related residuals. Statistical tables indicate whether a given Durbin-
Watson statistic is statistically significant given the sample size.
Statisticians recommend that researchers review not only a Durbin-
Watson statistic and determine its statistical significant, but also examine
statistical plots of residuals from a regression against the predicted values
and also against each of the predictor variables.

The SPSS procedure provides the researcher with three approaches to
removing autocorrelation. two algorithms (Prais-Winsten and Cochrane-
Orcutt) transform the regression equation to remove the autocorrelation.
The third method uses a maximum likelihood method for removing auto-
correlation. Regardless of the removal procedure, the program provides a
new estimated model with autocorrelation removed. The new model
includes estimates of the impact of each of the predictor variables on the .Z
“modeled” or dependent variable as well as predicted values of the
dependent variable in the historical and validation period. Finally, the
coefficients from the equation can be used to make projections into the
future for the “modeled variable.”
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■ E.4 ARIMA Modeling
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In developing regression forecasts based on indicator variables, the plan-
ner must have a very clear idea regarding the variables ~at might be
causally linkti with the “modeled” variable of interest. However, in
many practical situations, the planner lacks such information or, in some
instances, does not have adequate time-series data for the indicator vari-
ables. While such circumstances might dictate the use of an exponential
smoothing procedure or a curve estimation regression, there is a ta-
cally sophisticated time-series modeling approach that builds forecasts ~
from more inclusive and simultaneous analysis of complex past patterns
in the time-series than is achievable with application of either the expo-
nential smoothing or curve estimation regression approach. This class of
models is called the Box-Jenkins ARIMA Models.

ARIMA models process a great deal of information from time-series data,
but require the researcher to speafy only a minimum number of paramet-
ers. AIUMA models are highly flexible and compare a wide variety of
alternative models in developing the “best” or “correct” model for the
time-series data. Indeed, the Box-Jenkins ARIMA models have come to be
quite highly regarded and results from them carry a greater degree of
acceptability than do models based on either exponential smoothing or
curve estimation procedures.

The SPSS Trends routine provides the researcher with the tools to specify
and evaluate the ARIMA model. Based on the results provided, the
researcher can choose the model with the “best fit” and use it to develop
projections of the modeled time-series data into the future.

ARIMA Parameters

ARIMA stands for AutoRegressive Integrated Moving Average based on
the model’s three components. The general model (not considering sea-
sonality) is written as AR.lMA (p, d, q), where p is the order of autore-
gression, d is the degree of differencing, and q is the order of moving
average involved. Researchers specify levels for each of these parameters
according to the guidelines established in the ARIMA module of SPSS
Trends. The following paragraphs discuss in turn each of the parameters
and their specification process.

The p parameter is the order of autoregression. In any autoregressive
process, each value is a linear function of the preceding value or values. In Y
a first-order autoregressive time-series model, only the single preceding
value is used in model building; in a second-order process the two preced-
ing values are used in building a model; and so on. The coefficient for the
autoregressive parameter usually is greater than a -1 and less than a +1,
indicating that the influence of earlier observations dies out exponentially.
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In a first-order autoregressive process, the current value is a function of
the preceding value, which is in turn a function of its preceding value.
Thus, “each shock or disturbance to the system has a diminishing effect on
all subsequent time periods.”

The d parameter is the differencing parameter, providing adjustments
needed to make the time-series data stationary. Time-series data are sta-
tionary when two consecutive values in the series depend only on the time
interval between them and not on time itself. A time-series with a con-
stant mean value over time is consistent with this notion. However, “real-
world time-series are most often nonstationary; that is, the mean value of
the time-series changes over time, usually because there is some trend in
the series so that the mean value is either rising or falling over time.” The
nonstationary properties need to be removed from time-series data prior
to an attempt at specifying the model.

Indeed, time-series data often reflect the cumulative effect of some proc-
ess. “The process is responsible for changes in the observed level of the
series, but is not responsible for the level itself. Inventory levels, for
example, are not determined by receipts and sales in a single period.
Those activities cause changes in inventory levels. The leveIs the~elves
are the cumulative sum of the changes in each period. A series that meas-
ures the cumulative effect of something is called integrated series. You
study an integrated series by looking at the changes or differences from
one observation to the next. The differences of even a wandering series
often remain fairly constant.”

As noted in the discussion of the cross-correlation between a dependent
variable and a leading indicator variable, differencing is a common
approach to bringing about stationarity to a data series. The researcher
can specify a differencing parameter of either 1, for first-differences, or 2,
for second-differences.

The third ARIMA parameter is q, the order of the moving average. In a
moving average process, each value is determined by the average of the
current disturbance (i.e., error term) and one or more previous distur-
bances. The order of the moving average process specifies how many
previous disturbances are averaged into the new value.

It is important to differentiate between the autoregressive parameter and
the moving average one. “Each value in a moving-average series is a
weighted average of the most recent random disturbances (i.e., error
terms), while each value in an autoregression is a weighted average of the
recent values of the series. Since these values in turn are weighted aver-
ages of the previous ones, the effect of a given disturbance in an autore-
gressive process dwindles as time passes. In a moving-average process, a
disturbance affects the system for a finite number of periods (the order of
the moving average) and then abruptly ceases to affect it.”
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Steps in Using ARIMA
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ARIMA modeling involves three distinct phases: identification of the
underlying processes of the time-series data through specification of the
three parameters; model estimation based on the specified par~eters;
and model diagnosis. The researcher can use the diagnosis to re-specify
the parameters and re-estimate the model until the model is satisfactory.
The ARIh4A process is iterative and highly flexible.

The identification of the values of the three parameters involves a system-
atic procedure. Since the identification process for both the autoregression
and the moving average parameters requires stationarity, a researcher
must transform the data series, if necessary, in order to obtain a stationary
series. The most frequent method of obtaining a stationaq series for time-
series data is differencing. The selection of a first or second-order differ-
encing results in the determination of the d parameter in the ARTMA
identification process. This parameter is most frequently either a zero or a
one. It should be noted that while differencing is the most common
method of data transformation, the ARIMA routine in SPSS Trends pro-
vides for logarithmic and square-root transformations - useful in the
situation in which there is more short-term variation where the actual val-
ues are large than where they are small.

Once the differenang parameter is identified, the researcher must select
the autoregressive and moving average parameters. The ARIMA package
provides the researcher with autocorrelation functions between the time-
series variable of interest and its lagged value at 1, 2, 3,...lags. In addition,
the researcher is provided with the partial autocorrelation function, con-
trolling for autocorrelations at intervening lags. Based on theses functions
and their plots, researcher are guided in their selection of both the AR and
the MA parameters.

The Trends ARIMA procedure then estimates the model and its coeffi-
cients based on the parameters specified. The researcher supplies the
three parameters p, d, and q from the analysis of autocorrelation and par-
tial autocorrelation functions, while ARIMA performs the iterative calcu-
lations needed to determine the maximum-likelihood coefficients
associated with each of the parameters. The ARIMA software also adds
new series to the data file representing the fitted or predicted values, the
error (residual), and the confidence limits for the fit.

The diagnosis of the ARIMA results requires an investigation of whether
the model’s residuals are correlated and/or whether the residuals show a
pattern. If either the residuals are correlated or they show some time of z
pattern, then the researcher needs to return to the identification process
and re-evaluate the parameters entered into the model.

The model provides the researcher with the ability to calculate the auto-
correlation and partial autocorrelation function among the error terms or
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residuals. If the first or second-order correlations are large, the researcher
has probably misspeafied the model.

The residuals should be without pattern. That is, they should be white
noise. The ARIMA package provides a test for whether the residuals have
a pattern. The test is called the Box-Ljung Q Statistic, also called the
modified Box-Pierce statistic.

The focus on determining the appropriateness of a Box-Jenkins ARIMA
model is on the error terms – to insure no autocorrelation and no residual
pattern. It is not on whether each of the model’s coefficients is statistically
significant.

Once the researcher is satisfied with the model’s coefficients, its results
can be used to predict future values of the time-series variable of interest.
It is expected that projections resulting from the ARIMA method will
benefit from its enhanced features and its simultaneous treatment of the
order of autoregression, the degree of differencing, and the order of the
moving average.

■ E.5 Intervention Analysis

In the transportation field, events will frequently occur that result in major
changes in an established time-series pattern. For example, major deregu-
lation legislation, passed in the late 1970s and 1980 significantly altered
the competitive relationship among transportation modes. In addition,
major changes in fuel prices during the 1970s and 1980s resulted in major
disruptions and shifts in modal patterns. Transportation planners are fre-
quently called upon to estimate the impacts of major events on, for exam-
ple, levels of truck traffic or, alternatively, levels of rail traffic. The Box-
Jenkins ARIMA models can be adapted to include a specific assessment of
the impact of an intervention (e.g., passage of a major piece of transporta-
tion legislation or major fuel price increase) on a time-series data. The .
following pages explain the process through a technique called interven-
tion analysis. Again, the SPSS Trends program provides an option to
incorporate intervention analysis in the ARIMA model.

Researchers initially estimate an ARIMA model for the data without
regard to the intervention event or its corresponding impact. Thus, the
researcher follows the procedure detailed in the preceding section to
specify the three required parameters of the ARIMA model – i.e., the
autoregressive parameter (p); the difference parameter (d); and the mov- “
ing average parameter (q). As noted, initial specification of the
parameters is based on determination of whether the time-series data is
stationarity; the transformation of data through differencing; and an
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examination of the autocomelation and partial autocorrelation plots of the
time-series data at various lags.

Assessment of the impact of the intervention on the time-series requires
that an intervention variable be added to the analysis. The coefficient of
this intervention variable will represent its impact on the change in the
time-series variable of interest at a particular time controlling for the
impact of the other three parameters in the model.

The intervention variable is what econometriaans label as a “dummy”
variable, taking on a value of “l” from the time of the intervention on to
the present time and a value of “O”prior to the intervention. Thus, if a
transportation planner had a time-series data of motor carrier market
share and wanted to assess the impact of the Motor Carrier Act of 1980 on
that traffic, the planner would create a new variable to include in the
ARIMA model. This intervention dummy variable would equal zero for
all time-series data points prior to 1980 and a value of one from 1980 to the
present.

The SPSS Trends ARIMA program gives the researcher the ability, once
the p, d, and q parameters have been specified, to specify “one or more
predictor variables (also called regressors) for the time-series data being
modeled. The ARIMA program treats these predictors much like predic-
tor variables in regression analysis. It estimates coefficients for them that
best fit the data. The coefficients, indeed, are interpreted just like regres-
sion coefficients. Positive signs indicate that the intervention event adds
positively to the change in the modeled variable, while negative signs
indicate the opposite.

The specified ARIMA model with regressors must be diagnosed in a
fashion similar to the ARIMA model without regressors. The autocorrela-
tion of the residuals must be evaluated as well as their pattern. If autocor-
relation is found or a distinct pattern emerges, then the researcher must
return to the model identification phase and reevaluate the situation.

Seasonal Decomposition and Weighted Least
Squares Regression

Frequently, planners work with transportation data having distinct sea-
sonal trends. For example, small package shipments peak during the
holiday season; auto traffic peaks during the summer months; truck traffic ,~
slows during the winter months; household goods shipments peak in the
spring and summer and fall off rapidly in the winter.

The SPSS Trends package includes a Seasonal Decomposition routine to
“decompose” or break down a time-series variable into the following
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components a long-term trend component, a seasonal adjustment factor,
a cyclical component, and a random or irregular component. Indeed, the
Seasonal Decomposition routine takes the original time-series data and
adds the following information: (a) a seasonal adjustment factor for each
season; (b) a seasonally adjusted data series (i.e., the original data with the
seasonal component removed); (c) a deseasoned trend and cycle compo-
nent; and (d) an error component.

In the Seasonal Decomposition routine, the time-series dependent variable
is treated as a linear function of the following independent components:
trend, seasonal, cyclical, and irregular or random. This multiplicative
model is appropriate when seasonal variation is greater at higher levels of
the series. If seasonality does not increase with the level of the series, an
alternative additive model is available. Each of the model’s components
are estimated separately by the methods discussed below. The compo-
nents are re-assembled and used to generate forecasts of the time-series
variable from either the multiplicative or additive models.

Estimation of Seasonal, Trend, Cyclical, and Error Components

The Seasonal Decomposition routine initially removes the seasonality
effect, i.e., it deseasonalizes the data, and calculates a seasonal adjustment
factor for each season (e.g., each quarter). By removing the seasonal
variations in the data, the long-term trend and cyclical components can be
more easily identified.

The Seasonal Decomposition routine removes the seasonal variance by
calculating moving averages whose number of terms equals the periodic-
ity of the time-series (four quarters in our example). This removes the sea-
sonality by averaging the high and low points of each quarter for every
period in the time-series. A ratio is established between each quarter’s
value of the time-series data and the average value for the four quarters in
the period (that quarter and the subsequent three quarters). If this ratio is
greater than one, the quarter has a positive seasonal impact on the value of
the series. The specific seasonality index for each quarter is based on the
average of this ratio for each quarter throughout the entire time-series.
This seasonal index is the first component of the four needed to develop a
time-series decomposition forecast.

The second component needed for the decomposition forecast is the trend
component. The trend component is developed from a regression
between the seasonally-adjusted time-series and a time variable that
increments one unit for each quarter or time period in the database. A
positive coefficient for the trend variable would indicate growth in the
series over time, while a negative coefficient would suggest decline over
time. The trend coefficient in the regression is used to estimate a moving
average trend for each quarter in the time-series. This moving average
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trend value is the second component of four required to generate a fore-
cast by the decomposition method.

The cyclical factor, the third component, needed for a decomposition fore-
cast is the ratio of the seasonally-adjusted moving average and the mov-
ing-average trend. If this ratio is greater than one, there is an indication
that the deseasonalized value for that period is above the long-term trend
in the data. If the cyclic factor is less than one, the reverse is true.

By combining the trend, seasonal, cyclic, and error terms together, the Sea-
sonal Decomposition routine can be used to predict values of the tirne-
series data for both the historical and evaluation periods as well as for
forecasting in the future. As shown, here, however, the Seasonal Decom-
position routine requires separate estimates be developed for each com-
ponent of the equation. After developing each component’s estimates,
they can be re-assembled to develop estimates of the time-series data for
forecasting purposes.

Seasonal Adjustments with Dummy Variables . .-

I.f, however, the seasonal factors are treated as dummy variables in a
larger regression model, the seasonal effects and the trend can be evalu-
ated simultaneously. The simultaneous evaluation of the trend and sea-
sonal factors simultaneously make the use of the Seasonal Decomposition
routine somewhat less cumbersome. Positive coefficients for a dummy
seasonal variable would be indicative of a positive seasonal impact, while
a negative coefficient would suggest the opposite.

Use of Weighted-Least Squares to Adjust for Heteroscedasticity

When the seasonal effects are estimated simultaneously with other inde-
pendent factors, such as the trend component, researchers must be aware
of and make adjustments for heteroscedasticity - violations of the
assumption that regression residuals have constant variance. It is often

~ the case that there are differences in variance of a time-series variable
depending upon the specific time period. For example, while truck traffic
has a seasonal component (with declines in the winter months), the vari-
ance of truck traffic in the winter will be depend greatly on the severity of
the winter. Since there are fluctuations in winter’s severity, a researcher
should expect greater variation in truck traffic in the winter months.

Thus, when using seasonal dummy variables in a regression analysis, the
transportation planner needs to evaluate a scatterplot of residuals against
the values predicted from the regression. If this scatterplot indicates
greater dispersion in residuals depending on the predicted value of the
time-series variable, then heteroscedasticity adjustments should be made.
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The SPSS Trends routine provides for the use of weighted least squares as
an adjustment for heteroscedasticity. One approach would be to weight
each time-series observation by ihe standard deviation of its residual.
However, the package evaluates a number of different weighting
approaches and selects the best “weighting” factor and, then, uses that fac-
tor in re-estirnating the regression equation with heteroscedasticity ~
removed.

Advanced Methods for Seasonal Adjustments
.

While the discussion in the previous section focused on the use of the sea- “
sonal Decomposition routi-e for handling time-series data with seasonal
patterns, the SPSS Trends package includes other methods for handling
seasonal adjustments as well. In fact, the procedures for making seasonal ;-<.>...
adjustments in the Seasonal Decomposition routine are based on proce-

:L:::j

dures developed by the U.S. Bureau of the Census in the 1950s for sea-
sonally adjusting census data. New methods have been developed that
constitute refinements over the originally approaches. The SPSS Trends
package includes, for example, a seasonal adjustment method; labeled the
X-II ARIMA approach, adopted by researchers at Statistics Canada.
These researchers noted that when new data were added to a time-series,
the seasonal adjustment factors estimated with the Seasonal Decomposi-
tion method often were different. Forecasts resulting from the method
changed every time new data became available. While some changes in
the seasonal adjustment factors are inevitable with the addition of new
data, researchers felt that the level of change was too great in factors with
the Seasonal Decomposition method.

The X-n ARIMA method attempts to reduce the size of changes in sea-
sonal forecasting when new data is added to the series. The approach
adds forecasts and backcasts (obtained through ARIMA modeling) to the
ends of the original time-series data and then calculates seasonal adjust-

,...
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ment factors on the extended series with ARIMA modeling. $.,.3

As discussed, the ARIMA procedure requires the researcher to specify
three parameters in modeling a time-series with no seasonal pattern. The
process of specifying the p, d, and q parameters was presented above.
When a seasonal pattern exists in the data, the AIUMA model requires the
researcher to specify three additional parameters for the p, d, and q
parameters to reflect the seasonal factor. The SI?SS Trends package fully
supports the specification of an AIUM.A model with a seasonal compo-
nent. Thus, the ARIMA model can be used to develop backcasts and fore-
casts for the original time-series data under the assumption of seasonality. ‘~
These values are subsequently added to the original time-series and the X- .
11 ARIMA procedure is used to develop a new model with seasonal

Y..:,.

adjustment factors and better forecasts.
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This section will not go into detail regarding the modifications in the
ARIMA procedure needed to incorporate the seasonality factor. Suffice it
to say that the SPSS package fully supports this process and provides the
researcher the flexibility to evaluate each specified model and to re-
estimated the model based on intermediate results. Like the Seasonal
Decomposition procedure, X-II AIUMA produces four new series and
adds them to the original time-series file. These new series are the sea-
sonally adjusted series, the seasonal factors, the trend-cycle component,
and the error component.

H E.7 Other Software Packages

The previous discussion has shown the SPSS Trends software to be very
extensive and supportive of the entire range of time-series techniques
available. Its use requires user knowledge and interface with the pro-
gram. Frequently, the researcher needs to examine output, determine, for
example, whether error terms are correlated or whether they show some
distinct pattern. Based on this examination, the researcher must modify
parameters and r=stimate models. This required interaction and feeci-
back has many desirable characteristics. It gives the researcher maximum
control over the process and allows for modifications based on the unique
characteristics of the time-series. To many, this type of control and input
is a necessary condition for an effective tool.

However, there are in the market place some time-series packages that
provide an “expert” system component for selecting the “best” model
from among the range of alternatives - i.e., exponential smoothing, curve
estimation, AIUMA, etc. These programs make decisions about the
parameters that have to be specified - e.g., the p, d, and q parameters in
the ARIMA model and make decisions about what adjustments need to be
made in those parameters based on an analysis of the initial results. For
the regression with leading indicators, these programs will examine up to
fifty leading indicator variables in order to determine which, if any, are
appropriate indicators of the time-series data. Furthermore, the tech-
niques determine the appropriate time lag for any selected variable. In
short, these “expert system” software packages automate many of the
decisions that the SPSS Trends routine requires researchers to make on
their own.

The advantage of the “expert system” software packages is that the plan-
ner has the benefit of “expert” statistical advice on the most appropriate ,,
method for establishing a time-series data and using that estimation for
forecasting purposes. Certainly, the planner without any detailed back-
ground and training would be in a position to produce better forecasts
than would be possible in the absence of the software. On the other hand,
planners with some knowledge would prefer the control over the process
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that is afforded by the SPSS Trends routine. Indeed, these planners would
object to the “cookbook aspect of the “expert system” software.

Certainly, planners would benefit fkom a combination of approaches.
That is, they should analyze the time-series data to the best of their ability
with the SPSS Trends package and then compare their projections with
projections generated from an expert system package. Indeed, the expert
system software packages have features that allow the planner to override
the “expert’s” choice and to substitute their own evaluation in place of
that of the computer.
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